Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
NPJ Vaccines ; 7(1): 27, 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1713166

ABSTRACT

Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.

2.
Cell ; 184(5): 1188-1200.e19, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-1046538

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Macaca fascicularis , Spike Glycoprotein, Coronavirus/chemistry , Animals , Antibodies, Neutralizing , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , Mice , Mice, Inbred BALB C , Models, Animal , Nanoparticles/administration & dosage , Rabbits , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/blood , T-Lymphocytes/immunology , Viral Load
3.
Science ; 369(6504): 643-650, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-599037

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a large impact on global health, travel, and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated monoclonal antibodies from three convalescent coronavirus disease 2019 (COVID-19) patients using a SARS-CoV-2 stabilized prefusion spike protein. These antibodies had low levels of somatic hypermutation and showed a strong enrichment in VH1-69, VH3-30-3, and VH1-24 gene usage. A subset of the antibodies was able to potently inhibit authentic SARS-CoV-2 infection at a concentration as low as 0.007 micrograms per milliliter. Competition and electron microscopy studies illustrate that the SARS-CoV-2 spike protein contains multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as non-RBD epitopes. In addition to providing guidance for vaccine design, the antibodies described here are promising candidates for COVID-19 treatment and prevention.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Affinity , Antigens, Viral/immunology , B-Lymphocyte Subsets/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19 , Cell Line, Tumor , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Epitopes/immunology , Female , Humans , Immunologic Memory , Immunophenotyping , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Protein Domains , Protein Interaction Domains and Motifs/immunology , Receptors, Coronavirus , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL